Oscillating decorated interfaces in parametrically driven systems
نویسندگان
چکیده
منابع مشابه
Parametrically Driven Instability in Quasi-Reversal Systems
MARCEL G. CLERC, SALIYA COULIBALY∗ and DAVID LAROZE† Departamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile ∗Laboratoire de Cristallographie et Physique Moléculaire (LACPM ), UFR Sciences des Structures de la Matière et Technologies (UFR SSMT ), Université de Cocody, Abidjan, Côte d’Ivoire †Instituto de Alta Investigación, Univer...
متن کاملUniversal triangular spectra in parametrically-driven systems
Article history: Received 12 November 2010 Accepted 16 November 2010 Available online 20 November 2010 Communicated by V.M. Agranovich We analyse triangular spectra that appear in many branches of physics that deal with parametricallydriven systems, and give a simple theoretical analysis for them in terms of the nonlinear dynamics of multimode fields. Such spectra appear universally as a result...
متن کاملNonvariational Ising-Bloch Transition in Parametrically Driven Systems
MARCEL G. CLERC, SALIYA COULIBALY∗ and DAVID LAROZE† Departamento de F́ısica, Facultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago, Chile ∗Laboratoire de Cristallograplie et Physique Moléculaire (LACPM), UFR Sciences des Structures de la Matière et Technologies (UFR SSMT), Université de Cocody, Abidjan, Côte d’Ivoire †Instituto de Alta de Investigación, Unive...
متن کاملTraveling pulse on a periodic background in parametrically driven systems.
Macroscopic systems with dissipation and time-modulated injection of energy, parametrically driven systems, can self-organize into localized states and/or patterns. We investigate a pulse that travels over a one-dimensional pattern in parametrically driven systems. Based on a minimal prototype model, we show that the pulses emerge through a subcritical Andronov-Hopf bifurcation of the underlyin...
متن کاملTwo-dimensional localized chaotic patterns in parametrically driven systems.
We study two-dimensional localized patterns in weakly dissipative systems that are driven parametrically. As a generic model for many different physical situations we use a generalized nonlinear Schrödinger equation that contains parametric forcing, damping, and spatial coupling. The latter allows for the existence of localized pattern states, where a finite-amplitude uniform state coexists wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2018
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.97.012207